Patterns, Architecture, & Best Practices: Scaling Machine Learning Algorithms with Azure HDInsight

Sign in to queue

Description

In this talk, we will talk about the patterns, reference architecture, and best practices when scaling your machine learning algorithms in Azure. More specifically, we will talk about:_x000D_ i. Typical reference architecture and demo on using Azure DSVM to develop your small model, use Azure HDInsight to scale out the model, and use containers or VMs to operationalize your model_x000D_ ii. How to use different machine learning libraries in Azure HDInsight and blend them to analyze your data and train models, including SparkR, Microsoft R Server, and other third party libraries such as H2O._x000D_ iii. And we will also cover the team data science approach when talking about the above bullet points.

Day:

3

Level:

0

Track:

CE

Session Type:

Breakout: 75 minute

Code:

BRK3300

Room:

Hyatt Regency Windermere Z

Embed

The Discussion

Add Your 2 Cents