Achieving the KS threshold in the general stochastic block model with linearized acyclic belief propagation

Download this episode

Download Video

Description

The stochastic block model (SBM) has long been studied in machine learning and network science as a canonical model for clustering and community detection. In the recent years, new developments have demonstrated the presence of threshold phenomena for this model, which have set new challenges for algorithms. For the {\it detection} problem in symmetric SBMs, Decelle et al.\ conjectured that the so-called Kesten-Stigum (KS) threshold can be achieved efficiently. This was proved for two communities, but remained open from three communities. We prove this conjecture here, obtaining a more general result that applies to arbitrary SBMs with linear size communities. The developed algorithm is a linearized acyclic belief propagation (ABP) algorithm, which mitigates the effects of cycles while provably achieving the KS threshold in O(nlnn)  time. This extends prior methods by achieving universally the KS threshold while reducing or preserving the computational complexity. ABP is also connected to a power iteration method on a generalized nonbacktracking operator, formalizing the spectral-message passing interplay described in Krzakala et al., and extending results from Bordenave et al.

Day:

3

Embed

Format

Available formats for this video:

Actual format may change based on video formats available and browser capability.

    The Discussion

    Comments closed

    Comments have been closed since this content was published more than 30 days ago, but if you'd like to send us feedback you canĀ Contact Us.