Graphons, mergeons, and so on!

Download this episode

Download Video

Description

In this work we develop a theory of hierarchical clustering for graphs. Our modelling assumption is that graphs are sampled from a graphon, which is a powerful and general model for generating graphs and analyzing large networks. Graphons are a far richer class of graph models than stochastic blockmodels, the primary setting for recent progress in the statistical theory of graph clustering. We define what it means for an algorithm to produce the ``correct" clustering, give sufficient conditions in which a method is statistically consistent, and provide an explicit algorithm satisfying these properties.

Day:

2

Embed

Format

Available formats for this video:

Actual format may change based on video formats available and browser capability.

    The Discussion

    Comments closed

    Comments have been closed since this content was published more than 30 days ago, but if you'd like to send us feedback you canĀ Contact Us.