Stochastic Online AUC Maximization

Download this episode

Download Video

Description

Area under ROC (AUC) is a metric which is widely used for measuring the classification performance for imbalanced data. It is of theoretical and practical interest to develop online learning algorithms that maximizes AUC for large-scale data. A specific challenge in developing online AUC maximization algorithm is that the learning objective function is usually defined over a pair of training examples of opposite classes, and existing methods achieves on-line processing with higher space and time complexity. In this work, we propose a new stochastic online algorithm for AUC maximization. In particular, we show that AUC optimization can be equivalently formulated as a convex-concave saddle point problem. From this saddle representation, a stochastic online algorithm (SOLAM) is proposed which has time and space complexity of one datum. We establish theoretical convergence of SOLAM with high probability and demonstrate its effectiveness and efficiency on standard benchmark datasets.

Day:

3

Embed

Format

Available formats for this video:

Actual format may change based on video formats available and browser capability.

    The Discussion

    Comments closed

    Comments have been closed since this content was published more than 30 days ago, but if you'd like to send us feedback you canĀ Contact Us.