Using Fast Weights to Attend to the Recent Past

Download this episode

Download Video

Description

Until recently, research on artificial neural networks was largely restricted to systems with only two types of variable: Neural activities that represent the current or recent input and weights that learn to capture regularities among inputs, outputs and payoffs. There is no good reason for this restriction. Synapses have dynamics at many different time-scales and this suggests that artificial neural networks might benefit from variables that change slower than activities but much faster than the standard weights. These ``fast weights'' can be used to store temporary memories of the recent past and they provide a neurally plausible way of implementing the type of attention to the past that has recently proven helpful in sequence-to-sequence models. By using fast weights we can avoid the need to store copies of neural activity patterns.

Day:

2

Embed

Format

Available formats for this video:

Actual format may change based on video formats available and browser capability.

    The Discussion

    Comments closed

    Comments have been closed since this content was published more than 30 days ago, but if you'd like to send us feedback you canĀ Contact Us.