Most Likely Transformations

Download this episode

Download Video

Description

The "mlt" package implements maximum likelihood estimation in the class of conditional transformation models. Based on a suitable explicit parameterisation of the unconditional or conditional transformation function using infrastructure from package "basefun", we show how one can define, estimate and compare a cascade of increasingly complex transformation models in the maximum likelihood framework. Models for the unconditional or conditional distribution function of any univariate response variable are set-up and estimated in the same computational framework simply by choosing an appropriate transformation function and parameterisation thereof. As it is computationally cheap to evaluate the distribution function, models can be estimated by maximisation of the exact likelihood, especially in the presence of random censoring or truncation. The relatively dense high-level implementation in the "R" system for statistical computing allows generalisation of many established implementations of linear transformation models, such as the Cox model or other parametric models for the analysis of survival or ordered categorical data, to the more complex situations illustrated in this paper.

Day:

3

Embed

Format

Available formats for this video:

Actual format may change based on video formats available and browser capability.

    The Discussion

    Comments closed

    Comments have been closed since this content was published more than 30 days ago, but if you'd like to send us feedback you canĀ Contact Us.